Why Smart Orchestration Is Critical for Disruptive Industrial Digitalization
In modern manufacturing, integrating information technology (IT) and operational technology (OT) has become essential for driving productivity and building a more connected and efficient operation. IT has transformed data management and analysis for years, and OT has kept production stable and reliable. Now, combining these strengths offers manufacturers a unique opportunity: the chance to make smarter, faster decisions with real-time insights across operations.
This convergence also offers manufacturers a strategic edge in sustainability. By optimising resource use and reducing waste, IT-OT integration supports both operational goals and environmental responsibility, helping companies address pressures to adopt sustainable practices. As manufacturers recognise the potential of smarter, interconnected systems, IT-OT integration is proving to be an important step toward resilient and forward-thinking manufacturing.
Two critical pillars that drive this safety framework are intrinsic safety and functional safety. These concepts essentially lay the groundwork for secure operations, especially as OHVs become more interconnected and complex.
Understanding the distinct roles that intrinsic and functional safety play in the design and operation of OHVs is crucial to keeping these machines safe, dependable, and compliant with evolving industry standards. Let’s take a closer look at how these safety principles work and why integrating them is essential to future-proofing your off-highway vehicles.
For off-highway vehicles, intrinsic safety might not seem immediately relevant, but many OHVs operate in environments where combustible materials or flammable atmospheres are present—think of mining vehicles navigating tunnels with explosive gases. In such scenarios, the electrical circuits need to be incapable of igniting these atmospheres, which is achieved by designing systems that limit energy output, even in case of failure.
In OHVs, functional safety is governed by standards like ISO 26262 (for road vehicles) and ISO 13849 (for machinery). These standards dictate how safety-critical systems must be designed, tested, and monitored to ensure the safety of operators and bystanders.
Functional safety addresses the risk of mechanical or electronic malfunctions in the vehicle’s control systems, including:
Let’s take a mining truck, for example. The intrinsic safety of its electrical circuits ensures that the truck does not cause an explosion if it enters an area with methane gas. Simultaneously, its functional safety systems ensure that if its braking system fails, it can still come to a halt safely and not roll into other equipment or personnel. In tandem, these two safety approaches provide a comprehensive safeguard for both the vehicle and its environment.
Both intrinsic safety and functional safety will need to evolve to cover these emerging risks:
By building intrinsic and functional safety into the core of OHV design, manufacturers aren’t just meeting safety regulations—they’re creating vehicles that are ready for the increasingly complex demands of modern operations.