Best Practices in Building an Effective Asset Performance Management (APM) Strategy

Best Practices in Building an Effective Asset Performance Management (APM) Strategy

In today’s competitive business landscape, maximizing asset performance has become crucial for achieving operational excellence. In order to optimally manage assets and achieve peak performance, businesses must take a full-fledged approach to their asset management strategies and technologies. One of the key ways businesses maximize asset performance is through an effective Asset Performance Management (APM) strategy.

This article will discuss the best practices for building an effective APM strategy.

  • Identify Your Critical Assets

The first step in developing an effective APM strategy is to identify the critical assets that require attention. Conducting a risk analysis will help your organization determine assets that are most vulnerable to failure or that have a significant impact on production. Once identified, these assets should be a high priority in the development of an APM program.

  • Set Goals and Metrics

After identifying critical assets, it is vital to set specific goals and performance metrics for each asset. This includes identifying key performance indicators (KPIs) such as asset uptime, mean time between failure, and asset utilization. Clear goals and KPIs will ensure that the maintenance program focuses on improving the performance of each asset, ultimately leading to an increase in overall plant performance.

  • Develop a Maintenance Plan

A maintenance plan is essential for ensuring that assets are operating at their full potential. This plan should include regular inspections, preventive maintenance tasks, and corrective maintenance tasks. The maintenance plan should be based on the manufacturer’s recommendations, as well as your company’s specific needs and objectives.

  • Invest in Predictive Analytics

Predictive analytics is a crucial component of a successful Asset Performance Management (APM) program. Advanced analytics tools can provide real-time data and insights into asset performance, including identifying potential issues before they occur. This helps maintenance teams to schedule maintenance activities, anticipate issues, and reduce the risk of equipment downtime.

  • Train Your Employees

To fully realize the benefits of an APM program, employees must be trained on the strategies and technologies used. This includes training on equipment monitoring systems, predictive analytics software, and maintenance procedures. An effective training program will ensure that the team is equipped with the knowledge and resources necessary to maintain assets optimally.

  • Implement Continuous Improvement

An APM program is a long-term investment, and there is always room for improvement. Regularly evaluating the effectiveness of the maintenance plan, tracking KPIs, and implementing continuous improvement strategies can help optimize asset performance.

  • Importance of Collaboration and Communication 

In addition to these best practices, collaboration and communication are significant components of a successful Asset Performance Management (APM) program. Effective communication between the maintenance team and other departments is essential to ensure that everyone is working towards a common goal. 

Here are some benefits of collaboration and communication for APM:

  1. Improved decision-making: Sharing knowledge and information with key stakeholders ensures that the data is well-understood, leading to better decisions.
  2. Increased employee engagement: Create opportunities for employees to contribute their ideas, encouraging engagement and buy-in for APM initiatives.
  3. Ensuring alignment: Alignment between departments and stakeholders delivers operational efficiency by eliminating silos.
  4. Facilitating implementation: Collaboration facilitates the adoption of APM best practices, and communication ensures everyone understands the goals and objectives, leading to successful implementation.

End Note: 

In conclusion, building an effective Asset Performance Management (APM) strategy is crucial for any business that seeks to achieve operational excellence. The best practices we discussed here, from defining KPIs to using advanced analytics, can go a long way in helping you achieve this goal. For any other assistance with regard to Asset Performance Management, please don’t hesitate to connect with Utthunga.

We understand the importance of effective APM and the challenges that come with it. That’s why we offer cutting-edge APM solutions and services tailored to your unique business needs. Our team of experts is always ready to help you develop an APM strategy that will yield results and keep you ahead of the competition.

So, if you’re looking to optimize your asset performance and achieve operational efficiency, contact us today. Let us help you make the most out of your assets and take your business to the next level!


FAQs

1. Which industries use asset performance management most?

Utthunga’s asset performance management solutions are utilized in a wide range of industries, including oil and gas, power generation, renewable energy, and manufacturing. These industries heavily rely on critical assets that require continuous monitoring and maintenance to ensure optimal performance and prevent costly downtime.

2. What types of technology can be used to optimize asset performance?

Utthunga leverages various advanced technologies to optimize asset performance, including IIoT, predictive analytics, Machine Learning, and Artificial Intelligence (AI). The company also offer customized dashboards and analytics solutions that help businesses to better monitor and manage their assets. These technologies enable real-time monitoring, data analysis, and predictive maintenance, while ensuring high asset availability, reliability, and efficiency.

Why is Smart Manufacturing a Boon for the Pharmaceutical Industry?

Why is Smart Manufacturing a Boon for the Pharmaceutical Industry?

Smart manufacturing: Smart manufacturing provides the pharmaceutical industry with a host of benefits that help streamline production processes and increase efficiency. By incorporating advanced technologies such as machine learning, artificial intelligence, and data analytics, companies can optimize their supply chain, reduce waste, and minimize downtime. This results in higher quality products, improved safety, and reduced costs. Moreover, smart manufacturing enables pharmaceutical companies to keep pace with changing regulatory requirements and respond to market demands quickly, which is essential in a highly competitive industry.

How Can Manufacturers Employ It?

  • By maintaining a cloud-based database for data collection, analysis, interpretation, and application.
  • Combining 5G with industrial IoT to ensure that production-related insights can be remotely accessed anytime, anywhere, by operators, managers & business owners.

The Benefits Of The Smart Manufacturing Process In The Pharmaceutical Industry

  • Smart Engineering:

One of the biggest advantages of Industry 4.0 is that it improves the quality of product design, quality control, and the supply chain. Blockchain-based smart contracts, intelligent automation, and data science come together to build upstream & downstream connected ecosystems for developing smart products, keeping the future in mind.

  • Operational Excellence:

Digital technologies (like ML, AI, IIoT, etc.) are employed to automate and streamline each step in production, from load balancing to inline quality inspection and scheduling processes to performance management, testing, etc. It eliminates the possibility of errors and the time constraints associated with manual labor. Smart sensors constantly monitor the manufacturing process, run background checks, and troubleshoot errors to ensure that the machine is properly maintained and the conditions for yielding high-quality products are always followed. It makes the entire process very efficient and cost-effective.

Moreover, limited human intervention mitigates any threat to life. Operators are involved in the monitoring and application of technologies, not in complex operations. Thus, the use of advanced analytics and fully automated technology reduces the risk of onsite accidents.

  • Greater Sustainability:

Contrary to the traditional method of mass production, smart manufacturing relies on renewable energy. It was introduced with the objective of optimizing energy consumption, controlling waste production, and reducing poisonous emissions. As it is eco-friendly, it significantly boosts the environmental footprint and helps businesses comply with local and global environmental regulations.

  • Optimization Leading To Differentiation:

Being different doesn’t always mean staying ahead of the competition. It also involves exploring new avenues of research and the development of better business models, new services, and products based on futuristic technologies (e.g., nanotechnology, bioinformatics, etc.). The concept of smart manufacturing allows businesses to acquire product variance through research, experimentation, and trials based on real-time insights without compromising quality or exceeding the project budget. It helps manufacturers stand out from the crowd.

  • Quick Implementation Resulting In Better Business:

In the case of smart manufacturing, operators can quickly implement any changes in the current process, apply different technologies, or upgrade existing protocols. It avoids low-quality products & allows companies to predict market conditions, reduce delivery times, overcome unforeseen challenges, and meet customer demands. It guarantees better customer satisfaction, builds a solid brand reputation, and lets manufacturers expand their business beyond the local markets.

All the aforementioned benefits of smart manufacturing lead to two major outcomes: better decision-making based on practical applications and an efficient problem-solving process resulting from brainstorming & the use of reliable technologies.

Are you looking for IoT-enabled smart manufacturing technology to increase the efficiency of manufacturing & operations and facilitate swift data exchange? Your search stops at Utthunga, a one-stop platform for all Industry 4.0 solutions. Utthunga’s diverse range of smart product engineering and industrial solutions, including IIoT applications, hardware & software development, device integration, industrial communication, security, and testing, etc., enable you to automate industrial processes and help you gain an upper hand on the competition. Connect with us to learn more about how we can help you embrace smart manufacturing.

 

FAQs

1. What are the challenges of smart manufacturing?

Being complex in nature, smart manufacturing entails higher costs for implementation. It also raises concerns regarding data protection and the need for training employees in digital skills. It requires a lot of planning, research, and thought-through implementation.

2. What technologies are used in a smart factory?

A smart factory uses a combination of smarthardware and software engineering solutions to automate manufacturing operations. Some of the network infrastructure components used include sensors, motors, smart controllers, integrated information systems, etc. The software technologies in use include AI, Big Data, analytics software, IIoT, cloud computing, etc.

3. Why do we need smart manufacturing?

Smart manufacturing offers multiple benefits to manufacturers. E.g., enhance the efficiency of the production process, access to real-time data, eliminate the risks of errors, ensure sustainability, boost the quality of product, etc.

Edge Device Manager: Applications in the IIoT World

Edge Device Manager: Applications in the IIoT World

“Plan it before you program it,” a saying that echoes loud and clear in IT circles, is essentially the ethos of any successful IoT project. Internet Of Things (IoT) is a booming concept with an ever-increasing acceptance rate. Amidst the fascinating trends that emerge in this domain now and then, Edge Computing certainly tops the list. The idea of processing data remotely without sending it to the Cloud is an appealing concept. However, the only roadblock is the lack of proper planning to execute Edge computing. Without arranging for edge management before edge processing, you’re simply setting yourself up for a major disappointment. So, here is some compelling explanation for why an Edge Device Manager is what your project needs right now!!

What Is Edge Device Management?

Creating a central network where all small and large edge devices are interconnected and where you can track the performance of each of these devices is the essence of Edge Device Management. This management also covers the functional tasks of diagnosing failures, overseeing security, and pushing updates. A good Edge Device Management strategy covers all of the following aspects:
  • Seamless Connectivity
  • The collection of IoT devices should remain connected at all times with industrial communication protocols to reap maximum benefits. Working in diverse network conditions is not possible without having a way to bridge the functions of all the devices somehow.
  • Robust Security
  • Instances of security lapses and breaches via the edge are prevalent. Therefore, having end-to-end security through special web-controlled applications is essential for good edge device management.
  • Easy Upgrades
  • Only an advanced firmware management process enables the scheduling and handling of updates periodically. This becomes essential to empower the Edge network to make local decisions more efficiently.
  • Future-proofing
  • Keeping the network future-ready so that any emerging technology and protocol is incorporated when the need arises is a hallmark of edge device management.
  • Ready To Install and Use
  • The software that empowers an organization to manage its devices should be convenient. Therefore, Edge Device managers should come as certified products delivered ready to install rather than individual tools for different functions. All data migration services require device managers of similar kinds.

Why Are Edge Devices Essential for IIoT?

The features and definition of Edge devices represent their utility for the Industrial Internet of Things (IIoT). In a nutshell, edge devices help transmit data between a local network and the Cloud. However, to send this data without a glitch, there needs to be an intelligent gateway that segregates, translates, and securely transfers data from the source to the Cloud. Edge devices play this crucial role. The Industrial Internet of Things (IIoT) needs optimization to improve productivity significantly. Industrial settings require real-time analysis and adaptations to changing demands, so they must be performed consistently without delays or downtimes. Since Edge computing provides a low-latency alternative through its fast local processing, Edge devices are the most viable option for IIoT applications. Edge devices for IIoT offer critical benefits, such as the condition-based monitoring service. They can analyze data to detect and report possible failures, which improves equipment uptime. The fast processing speeds also enable technicians to plan for potential repairs, which allows them to stay equipped with the necessary data to plan accordingly. A different perspective on why industries need Edge computing over Cloud computing is that the Cloud usually depends on third-party gateways to boost security. Confidential industrial data is somewhat at risk in such arrangements. On the other hand, the security-conscious approach of edge devices offers a solution to this problem, especially in extreme security environments where third-party security is not allowed.

Various Roles and Applications of Edge Device Manager in the World of IIoT

Edge device managers play the following pivotal roles in an Industrial Internet of Things (IIoT) setting :
  • Manage a Huge Influx Of Data
  • With data being received and transmitted in abundance, the impeccable management capabilities of edge device managers come off as a blessing. These applications make rapid decisions regarding which data to keep and which to discard, thereby cutting the clutter completely and promoting proper utilization of information.
  • Event Processing
  • Once the computationally heavy work of developing and recognizing patterns is completed, edge device managers, with their ability to guide the execution of plans locally, complete the necessary actions without requiring any intervention.
  • All-round Monitoring
  • The edge device manager commands it all, from detecting latency changes to monitoring bandwidth usage. Also, the power monitoring function of edge device managers is crucial in industrial environments where devices are placed at inaccessible locations.

The Bottom Line

Edge computing is the best way to centralize industrial computing systems sustainably and effectively. Edge device managers serve by creating a conducive environment for edge devices to prove their worth. With proper management, edge computing gives businesses the luxury of operating in a hands-off environment, significantly lowering the instances of failures and network latencies. Uthunga is a product engineering and industrial automation solutions company. We offer data migration services, Automated testing services, DevOps consulting services, and more. Our Edge Device management offerings are tailored for specific industrial usage. Contact us to learn more about our industrial automation solutions and DevOps Services.
Role of Protocol Simulator in Digital-Twins

Role of Protocol Simulator in Digital-Twins

Digital twins have revolutionized the way organizations think about their product design and development. This futuristic concept has become one of the major trends of industry 4.0 since IoT and simulator tools have become more and more prevalent. So, what are digital twins, why is it important for organizations, and what is the role of protocol simulators in digital twins? To find out the answers to all these questions, read on. 

What are Digital Twins and How do they Work?

Digital Twins are the digital representation of physical objects or procedures. They allow the transfer of data which is collected from IoT devices, sensors, edge hardware, and other embedded devices, thus, replicating the real data transfer process in product development companies. It is a mega model that provides comprehensive information about the physical device along with its mechanical elements, magnitude, and different functional aspects that it encompasses. Digital twins are created with the help of sensors, communication networks, and a digital platform. These virtual models can aid in implementing new technology trends by employing advanced analysis, monitoring, testing procedures, and services. 

You cannot understand the system behavior precisely through traditional methods as communication networks have become very complex these days. So, by using network protocol simulation tools, you can develop the networks in real-time. The network is molded with the help of devices, links, and applications to get accurate network performance reports. 

Importance of Network Protocol Simulator

A network protocol simulator depicts the model of the real communication network with its application traffic and operating environment. This can help in studying the behavior of real networks under different operating conditions in an economical manner without any kind of risk. However, this network protocol simulator must have adequate fidelity so that the network dynamics are reflected precisely. A reputed digital transformation services provider can run a reliable Modbus master simulator faster than in real-time and offer a wide range of Modbus protocol simulator tools for network visualization, and analysis. 

Some common protocol simulators are listed below:

  • HART

uSimulate HART helps in simulating the communication protocols, control systems, field devices, procedure flow, and network traffic. HART can simulate HART slave devices efficiently. This hardware simulator can play a crucial role in the verification of host systems such as AMS, DCS, configurators, calibrators, and also allows operator training.

  • GE-GSM

GE-GSM Simulation tools are capable of simulating GSM Gateway as well as the GSM protocol version 1-message types. It can frame a Virtual Plant Topology with the help of the Network Topology which is popularly known as the GSM Gateway Configuration tool and simulates different Process Signals along with the  Network Traffic.

  • IEC-104

IEC-104 simulator is an efficient protocol simulation tool that can support 255 independent client nodes. This slave simulator can test the compliance as well as the performance of your IEC-104 masters by running on multiple platforms. It is a vital aspect in the power grid networks in which the reliability of the process is assured by the efficiency and speed of how the IoT devices share information between them. IEC 104 is a comprehensive communication protocol for seamless communication between the control station and the electrical substation.

Benefits of protocol simulations using digital twin

There is a range of advantages to be gained through the use of simulation, such as:

  • Lower Financial Risk

Financial risk is less in simulations as compared to real-life experimentation.The simulator proves to be an economical investment for verification of various host systems like AMS, DCS, Configurators, Calibrators, Diagnostics, etc. In real-world systems, the potential costs include hiring staff, buying new expensive equipment, and much more. Protocol simulation enables you to test theories and prevent costly real-life errors.

  • Repeated Testing in exactly the same conditions

Different theories can be tested conveniently by simulations, thus, allowing innovations in exactly similar circumstances. You can even test and compare your innovative ideas without any deviation.

  • Gain Better Insights of Process for Improvement

Required improvements can be integrated easily at any time throughout the product development process by testing different theories through protocol simulation.

  • Know the Short and Long-Term Impacts

With the help of a Modbus RTU protocol simulation, you can peep into the future by thoroughly analyzing the impacts in the coming years in just a few seconds. It enables you to see both short as well as long-term impacts to make more informed decisions that can prove to be beneficial in the future.

  • Assess Random Events

You can assess random events with a protocol simulation like an unexpected staff or supply chain issue.

  • Analyze Non-Standard Distributions

You can track non-standard distributions with ease along with analyzing your set parameters. When you take note of all changing parameters with the help of a simulation, you can mimic the real world more accurately.

  • Boost Stakeholder Buy-In

A Modbus tcp master simulator can also improve buy-in from your partners, and stakeholders. The results of any procedure changes can be visually demonstrated, thus, improving engagement with the stakeholders or even enabling a sales pitch based on simulation.

In the present competitive age, you must implement this potentially disruptive technology. However, the preciseness of digital twin models relies mainly on the accuracy of the data that is used in designing them. Utthunga is one of the top product development companies having a highly experienced team of professionals who can support projects of any scale and overcome all kinds of challenges with their cutting-edge digital twin technology and best-in-class DevOps Services. Utthunga’s protocol simulators have been created by experts on a world-class simulation framework, uSimulate which is easily configurable and boasts high performance.

Top 10 Industrial Automation Trends in 2022

Top 10 Industrial Automation Trends in 2022

Most industries have been forced to change course due to the global pandemic. However, the forward-thinking industrial manufacturers had already begun their digitalization journey and were in a much stronger position during that crucial time. Since many industrial manufacturers have already learned from the crisis, they’re investing in new technologies, processes, and business models, to emerge stronger than before. If you are searching for the latest inventions, systems, and strategies for your industry, you might want to consider the trends that are influencing industrial automation.

1. Increased Investment in Internet of Things (IoT)
Industry 4.0 or the fourth industrial revolution has transformed traditional industries into smart ones by incorporating innovative digital technologies. The Internet of Things (IoT) is a rapidly growing technology that is helping manufacturers in connecting and monitoring the different components of their operations, and getting insight that was never before possible. This flawless connectivity gives valuable data to the manufacturers that enable them to optimize, change, and enhance their manufacturing processes. IoT is not only improving safety, and streamlining manufacturing, but also creating new advanced products with better capabilities.

2. Accessible Automation
New technologies have made automation accessible to more manufacturers and are significantly changing the way industries operate. Automation has become possible with user-friendly Manufacturing Process Management systems, simple robotics solutions, and human-robot collaboration. With industrial automation, workflows have been optimized, resulting in better production and cost reduction.

3. Use of Autonomous Mobile Robots
One of the key drivers of this industrial automation trend is autonomous mobile robots. While robotics has always been an ultra-sophisticated technology that needed trained roboticists, this new technology has now made automation attainable for industries of all sizes. Tailor-made autonomous mobile robots are the future of industries and have reinvented the way workers operate within an industry.

4. Shift To The Edge
Agility will be critical in 2022. Collaborative robots can make real-time complex decisions, and are better equipped to respond proficiently even in changing situations. For this, data processing and computing power need to shift to the edge, or nearer to the creation of data to boost processing and reduce latency. It will not only help in manufacturing goods efficiently but also ensure the security of the workforce.

5. Universal Connectivity
To avail industry 4.0 benefits, industries need to establish automatic, instant as well as universal communication protocols amongst their devices and locations by hiring reliable industrial engineering services. Universal connectivity provides the ability to grow in the future with standard Ethernet as its specifications can be expanded. It allows all devices to speak the same protocol with the aid of harmonized application profiles.

6. Use of Artificial Intelligence & Machine Learning
Since industries have to manage more data than ever before, cutting-edge technologies, like artificial intelligence (AI) and machine learning, can help them to make the most of that data. AI and machine learning do not just mean walking or talking robots, but it refers to the smart abilities of a system to recognize data trends and infer logical insights that can help industries to make the best data-driven decisions. AI and machine learning can enhance many aspects of a manufacturing operation, like Supply Chain Visibility, Inventory Management, Asset Tracking, Forecasting Accuracy, Warehousing Cost Reduction, Transportation Cost Reduction, and more.

7. Remote operations Are The New Normal
Due to the pandemic, many industries have started running their operations remotely, with a majority of employees working from different locations outside the plant. It needs a connected workforce along with the right cyber-security tools to give real-time visibility as well as seamless control. Remote industrial operations require appropriate technology for a well-connected workforce, that facilitates collaboration, supports interactions, provides secured access to information from anywhere, and reduces paperwork. This boosts the efficiency of the tasks and also ensures a safer working environment for employees.

8. The Surge in 3D Printing
These days, 3D printing is combined with traditional procedures to create unique combinations that perform much better at a lower price and can be manufactured according to the customer’s needs. 3D printing offers more possibilities for designing as per preference. It can help in achieving the same thing in a single take without additional procedures like screwing or welding. Waste can also be reduced, and recycling cuts down the waiting time for the replacement parts and transportation.

9. Implementation of VR and AR Tools
Transfer and retention of knowledge are quite challenging for the industries but now, new tools like Augmented Reality (AR) and Virtual Reality (VR) can be employed by hiring expert product design engineering services to address this issue. Both these tools are interactive experiences and the main difference is that in VR, a simulated environment can replace the user’s environment completely whereas, in AR, the user’s real-world environment is altered by overlaying additional data. Both these technologies can be used in the form of a head-mounted device for personnel training. Many companies use AR solutions for remote assistance to allow people in different locations across the world to have a live view and troubleshoot together.

10. Constructing Intelligent Factories In The Cloud Technology
In addition to robotics and virtual reality, advanced environments are created using cloud migration technology and smart sensors. These smart sensors can carry out various tasks like conversion of data into different units of measurement, communication with other devices, recording feedback, statistics, and more.
Utthunga is a reputed product engineering company which offers industrial automation solutions that can cater to the technology needs of the industrial world. Utthunga’s expert engineers can dive into your process and create a precisely tailored automation solution symbiotically ushering in this new industry 4.0 era of production. To leverage the advances, contact us today!