4 Reasons- Why TSN for Motion Control Applications?

4 Reasons- Why TSN for Motion Control Applications?

 

Backdrop of Communication Protocols in Industries

 

The IT and OT layers of the automation pyramid execute two different types of real-time operations, i.e., soft real-time communications and hard real-time communications, respectively. The soft real-time communications mostly take place across the IT applications horizontally and vertically across MES, ERP, cloud, and control systems. On the other hand, hard real-time communications take place horizontally across machines, and vertically among controllers, and SCADA/HMIs.

 

While soft real-time operations can bear the latency of 10 to 50 milliseconds, most hard real-time operations can get severely impacted if the latency is more than 1 millisecond. Motion control applications are usually hard real-time bound and usual network errors like indeterminism, jitter, high latency, and bandwidth can severely impact the throughput.

 

Imagine a robotic arm that is moving items on a conveyer belt and passing to the next station for further processing, must be highly precise and accurate in terms of its timings. A delay of a fraction of seconds can damage the items or break the operation continuity.

 

This clearly underlines the demands of cutting-edge machines, i.e., speed, precision, and determinism. At present, Fieldbus and Ethernet are the two majorly used networking technologies on plant floors. With continuous updates in Ethernet standards, it is also becoming gradually popular for OT layer operations.

Challenges in Existing Networking

There have been several communication technologies that have emerged for field level, but Ethernet and Fieldbus protocols are most widely adopted across industries. However, despite several periodic upgrades, the industrial plant floor experiences the following challenges:

 

  • Latency: The Generation 1 industrial networking technologies like RS 232 & RS 485, SERCOS, DeviceNet, etc., were able to support data transfer over long distances. However, the rate of data transfer was very low, i.e., approximately 1 Mbit/sec. To overcome this, Ethernet with an established physical layer became the primary choice for industries. Gradually the Generation 2 networking technologies started emerging with Ethernet PHYs such as Profibus with PROFINET, Modbus with Modbus TCP, CC-Link with CC-Link IE, etc. However, even with many standards, Ethernet is still unable to address the latency and determinism needs of the industrial networks. Although, PROFINET IRT offers the same deterministic capabilities that is expected for hard real-time operations. However, a precise timing model is necessary to plan the traffic slices. Unfortunately, the latency in standard Ethernet can be assured up to a certain extent due to its store and forward strategy.
  • Jitter: One of the biggest challenges that industrial motion control applications face is certainly not the slow speed of the connectivity. It is rather the jitter. Jitter can be understood as the variance in latency. Sadly, the data transmission over TCP, IP, or UDP necessarily exhibits jitter. Due to the lack of traffic prioritizing and slicing ability, the varying latency interferes with the plant floor operations to a great extent, especially when the operations are time-critical.
  • Implementation Complexities: The Generation 1 industrial networking technologies had different physical layers, which did not allow them to share common wiring across heterogeneous networks. Subsequently, the Generation 2 network solutions used common Ethernet PHY, but proprietary layer 2 implementations still cannot allow them to be transmitted over the same cable. This is a serious installation complexity for a plant floor with variants of machines and devices supporting multiple vendors. This is an ideal case of manufacturer lock-in as it forces the industrial plants to be confined with selected vendor(s).

 

As opposed to top layer application requirements, plant floor requires the network connectivity to have ultra-low latency, fixed jitter, and deterministic capabilities. These necessities call for a networking standard that not only allows the connectivity to be time-sensitive, but also spans across all the layers of the automation pyramid.

 

What is Time-Sensitive Network (TSN)?

 

Ethernet is one of the most preferred networking technologies for top layers of the network. However, it is gradually becoming the right choice for the factory settings also. The way to resolve the common issues present in standard and industrial Ethernet is to introduce new networking standards in the Layer II of the OSI model. These brand-new standards are combinedly termed as Time Sensitive Network, abbreviated as TSN.

 

TSN is an extension of Audio Video Bridging technology (a set of standards that allows high-quality streaming of audio and video signals over standard Ethernet). The IEEE 802.1 TSN Task Group developed the TSN standard, which can solve all the challenges that were present in standard and industrial Ethernet. A few of many standards in the TSN specification that can connect the automation pyramid in a single thread are:

 

  • IEEE 802.1AS: A mechanism that synchronizes the messages and delays of all the nodes in the network by keeping them identical to the clock of the Grandmaster node, called Grandmaster Clock. The Grandmaster is selected using an algorithm called Best Master Clock Algorithm (BMCA). The BMCA is responsible for broadcasting the time and measuring the delays to maintain the schedule.
  • IEEE 802.1 Qbv: A standard that schedules the traffic based on the time shared by the grandmaster node. 802.1Qbv defines a mechanism to control the flow of queued messages through the TSN switches. This ensures that only the scheduled messages are released in those time windows. The non-scheduled traffic is blocked, which thereby enables the delays from each switch to be deterministic.
  • IEEE 802.1Qbu: This standard interrupts the large low-priority Ethernet frames in order to transmit high-priority traffic. Post this it resumes sending the remaining part of the large frame without impacting or losing previously transmitted data.
  • Other Standards: Some of the other standards that define various features of TSN are:

 

802.1CB Frame Replication and Elimination (FRER) adds fault-tolerance to the network
802.1Qca Explicit path control, bandwidth and stream reservation, redundancy (protection or restoration) for data flows
802.1Qcc Offline/online configuration of TSN network scheduling
802.1Qci A policing and filtering standard that mitigates the risk of incorrect node functions
802.1Qch Defines traffic for forwarding queued traffic
IEEE 802.1Qcr Provides bounded latency and jitter

 

 

 

Migrating to a TSN-based Ethernet network will require special hardware features like PTP protocol (Precision Time Protocol) to synchronize the network clock and PHY/MAC to modulate/demodulate and send/receive the signals. Determinism in motion control applications can be brought through specific protocols like EtherCAT, Profinet IRT, and EtherNet/IP among others.

 

Why TSN for Motion Control Applications?

 

TSN comes with the strength to revamp motion control applications. It does so by enabling the factories to cope with the long-standing issues of incompatibility among the machines, absolute real-time deterministic communication, and much more. Take a look.

 

  • Scalability: TSN will proliferate the use of Standard Ethernet across the automation pyramid. This will allow factories to utilize the existing top layer network settings for the field layer as well. This also implies that adding new machines/devices will be easier without having to worry about the vendors and make. Therefore, one network the from field layer to the top layer.
  • Interoperability: TSN eliminates the persistent issue of incompatibility among the motion control devices and applications by allowing the Commercial Off the Shelf (COTS) networking technologies to be implemented on top of the Data Link Layer of the OSI model. Not only this, with Ethernet’s backward compatibility, device engineers will be able to incorporate TSN in their networks without having to worry about obsolescence encouraging improved interoperability among old and new machines/devices.
  • Greater Scope for IIoT: With the ability to classify the bandwidth for time-critical and non-critical message queues, TSN allows the same network to be used for various motion control and other applications. This also simplifies networking across OT and IT layers allowing a smoother communication model between the machines on the plant and the client applications at the IT layer. Therefore, improved scope for IIoT.
  • Lower Maintenance Cost: With one standard technology across the communication hierarchy, the complexity of maintaining two separate technologies in IT and OT layers is eliminated. This further leads to lesser cables and hardware, thereby incurring lesser maintenance cost.

 

Footnote

 

The growing importance of real-time data accessibility for time-critical motion control applications has pushed the protocol associations to create their adaptation of TSN. TSN will definitely enable multiple protocols to be implemented on top to deliver cutting-edge solutions. Utthunga is renowned for having a tremendous success rate in delivering best in-class solutions. Our product engineering capabilities span across all the layers of the automation hierarchy. Our motion control services extend over hardware and firmware development, application development, obsolescence management, Value Analysis and Value Engineering, lifecycle management, validation and verification, pre-compliance and certification support, and a lot more.

 

Check out our motion control services here!

 

 

 

The Benefits of IIoT for Machine Builders

The Benefits of IIoT for Machine Builders

Improving customer service. Safeguarding customer satisfaction. Winning customer loyalty. Increasing service revenue. Augmenting aftersales turnover.

These are some of the primary goals that machine builders have been pursuing. But, how many have been able to meet these goals? Unfortunately, not many, owing to the machine visibility challenges arising out of lack of meaningful data flow from the commissioned device/equipment.

Nevertheless, this will not be the case going forward. Yes, you heard it right! IIoT is the magic wand that has provided a 180-degree spin to the situation.

Wondering how? Let’s comprehend by considering the present reactive customer service model as a case in point.

Whenever there is a machine breakdown or performance issue, the client logs in a compliant with the corresponding machine builder. The OEM’s service representative responds to the service request by collecting data about the issue — via email, telephone, or chat — and scheduling an engineer visit. The engineer will visit the client’s location, provide a resolution, and close the service ticket. All in all, a lengthy process with avenues for delays and disruptions, which can hamper customer satisfaction across many fronts.

IIoT turns this situation upside down.

By enabling machine builders to seamlessly connect their equipment/machine with intelligent sensors that can transfer real-time data, IIoT provides end-to-end connectivity and visibility, which was unheard of in the industry. This means that machine builders no longer have to wait for an issue to appear. They can proactively monitor the performance of the machines spread across geographies in real-time and spot any discrepancies. This gives them an edge to identify potential equipment issues before they occur and proactively reach out to the customer to provide service.

The end result: Better customer service, which will lead to greater customer satisfaction, increased loyalty, and improved service revenue.

The benefits don’t end here. IIoT-based proactive customer service also helps strengthen the relationship between the machine builder and their customers by creating an ongoing relationship; one that allows machine builders to proactively perform maintenance, while keeping device uptime high (for the customer) and minimizing service costs (for the machine builder). Thus creating a win-win situation that will augment aftersales revenue.

The Tip of the Ice-berg

Apart from supporting proactive customer service, IIoT also helps machine builders to:

What Reports and Studies Say?

  • IIoT-based predictive maintenance solutions are expected to reduce factory equipment maintenance costs by 40% – Deloitte
  • Using IIoT insights for manufacturing process optimization can lead to 20% higher product count from the same production line – IBM
  • There is potential to increase asset availability by 5-15%, and reduce maintenance costs by 18-25% using predictive maintenance tied to IIoT – McKinsey

Accelerate R&D

By creating an information value loop from the end machines (commissioned machines at the client’s location) to the engineers, IIoT can significantly shorten the time between an issue surfacing in the field and fixing the issue in production (even before either the client or the competitor realizes it). In the process, it can accelerate the product design cycle and reduce time-to-market, which will give an edge to the machine builder with regard to the competition.

Efficient Inventory Management

IIoT empowers machine builders to effectively track the Remaining Useful Life (RUL) of the commissioned machine along with its components. Based on these insights, they can proactively procure spare parts and efficiently manage the inventory.

Improve Operational Efficiency

Using advanced analytical and machine learning capabilities, IIoT supports faster identification of issues in operations & functions, and facilitates quicker resolutions (even before there is downtime). The result: A multifold increase in operational efficiency.

Making Multiple Revenue Streams a Reality!

What was once a dream, is now a reality! You no longer have to rely on one source of revenue —machine sales — for survival. Unlock untapped revenue streams across maintenance and support space using IIoT.

Start your IIoT journey now using Utthunga assistance. We are an industry leader with extensive experience in facilitating the creation of a truly connected IIoT ecosystem with real-time data transfer and analytics capabilities.

Will Industry 4.0 Exist without OPC UA

Will Industry 4.0 Exist without OPC UA

A new genre of industrial data exchange between industrial machines and communication PCs is on the rise – the Open Platform Communications United Architecture (OPC UA). Interestingly, application manufacturers, system providers, programming languages, and operating systems have no bearing on this open interface standard. The most significant distinction between OPC UA and the previous versions of industrial communication protocol is how the machine data can be transferred – in bundles of information that machines and devices can understand. OPC UA allows devices communicate with each other (horizontally) and also with the upward components like PLCs, SCADA/HMI (Human Machine Interface), MES (Manufacturing Execution System), and up to the Enterprise Cloud (vertically). The horizontal and vertical spectrum comprises OPC UA components, including devices, machines, systems, gateways, and servers that are integrated with machines and devices.

is OPC UA Important in Industry 4.0?

The secure, standardized flow of data and information across devices, equipment, and services, are some of the problems for Industry 4.0 and the industrial Internet of Things (IIoT). The IEC 62541 standard OPC Unified Architecture (OPC UA) [I.1] was the only recommended option for creating the communication layer in the Reference Architecture Model for Industry 4.0 (RAMI 4.0) in April 2015. The most fundamental prerequisite for adopting OPC UA for industrial 4.0 communication is an Internet Protocol-based network (IP). Anyone who wishes to promote themselves as “Industry 4.0-capable” must also be OPC-UA-capable (integrated or via a gateway).

Implementation of Industry 4.0 to Overcome Interoperability

OPC UA is a powerful solution for overcoming interoperability issues in Industry 4.0. Interoperability is one of the most significant problems that I4.0 presents to companies. Through its semantic communication standard, OPC UA demonstrates that it is a solution. OPC UA is a crucial contributor to Industry4.0 because it facilitates information transfer between devices and machines, which cannot understand confusing instructions. The more specific the instructions are, the better the outcome. The selection of tools is crucial for installing the finest OPC UA for any automation system. Because the devices in industrial automation systems are administered by software, a well-functioning software development kit (SDK) is required. It guarantees that end-users and software engineers have a good user experience.

Important factors to consider while implementing OPC UA :

The appropriate software development kit is essential for establishing an efficient OPC UA. We’ve compiled a list of ten considerations for an automation maker, OEM, discrete, and process manufacturer when selecting an SDK. The Ideal SDK Vendor Most businesses lack adequate resources, both technological and human. Such gaps force organizations to outsource their requirements. As a result, the chosen SDK must fulfill its application requirements while improving the time to market. An ideal SDK must be advantageous in terms of both money and performance. A majority of SDK consultants provide the core functionalities that offer fundamental OPC UA advantages such as security and API. Scalability A scalable SDK empowers OPC UA to support both new and existing systems. It allows the platform-independent toolkits to function efficiently for both lightweight and enterprise-level applications. As a result, manufacturers must consider a scalable SDK that is platform or OS agnostic and supports vendor-independent hardware. Utilization Ease It is one of the most preferred yet neglected features. An SDK should be simple to use so that OEMs or small-scale manufacturers can save time and resources learning the OPC UA specification. It must support a basic application and provide API connectivity. CPU Helper An OPC UA SDK developed using architectural principles for embedded devices uses considerably less CPU. It also means that the software program may do a lot of work on a single thread. It is useful when multi-threads aren’t accessible. It is also economical because it offers a low-cost CPU that can perform majority of the work in multi-thread scenarios. Excellent Memory A decent OPC UA implementation should be light on RAM and have a small footprint. Generally, memory leaks can build up over time and put the entire system to a halt. There must be no memory leaks in the OP UA SDK (under any use case situations). Security and Compatibility The OPC UA SDK toolkit must be interoperable with diverse applications and meet stringent security requirements. The OPC UA standards provide various security options, and an ideal SDK should support them all. Language Assistance Even though C++ is the most common language for writing SDK programming, other languages like Java, C, .NET, and others are also utilized based on the needs. Developing an OPC UA SDK in multiple languages facilitates incremental enhancements to their products based on specifications such as AMQP, Pub/Sub, and UDP. Third-party Libraries Because most businesses have preferred libraries, SDK suppliers usually include wrappers such as standard crypto libraries, use-case examples, manuals, and API references to utilize wrappers such as NanoSSL, mBed TLS, TinyXML2, and Lib2XML. Scope for Future Improvements An SDK must be capable of evolving to support emerging technologies and processes. Because of the continuing advances in SDKs and OPC Foundation-based technologies such as AMQP Pub/Sub, UDP, and TSN, manufacturers must guarantee that SDK suppliers are equipped with the required capabilities while implementing industry-relevant protocols. Vendor Assistance SDK suppliers must provide knowledge and support to manufacturers at every stage of their OPC UA deployment. An efficient OPC UA deployment requires a partnership built on trust, mutual benefits, and understanding. OEMs, discrete and process manufacturers must collaborate to understand and execute OPC UA requirements for everybody’s benefit.

How OPC UA contributes to Industry 4.0 and overcomes interoperability challenges?

OPC UA provides a mechanism for safe and reliable data sharing. As the world’s most popular open connectivity standard, it plays a crucial role in achieving Industry 4.0 goals. OPC UA fulfills the Industry4.0 requirements of platform independence and time-durability. Additionally, OPC UA is designed to enable future factories to include ‘invisible’ components into their permanent data exchange, thereby significantly enhancing OPC UA’s position in the realm of Internet of Things. Embedded OPC UA technology allows open connection to devices, sensors, and controllers, providing many benefits to businesses. End-users gain from speedier decision-making due to the data it delivers, and the integrated corporate architecture becomes a reality. The notion of an interconnected industry is central to Industry 4.0. As the precursor to OPC UA, OPC Classic pioneered an ‘open data connection’ revolution, removing proprietary connectivity barriers between the management, control systems, and the rest of the organization. OPC UA takes the notion of a unified solution a step further with its platform & operating system agnostic approach and data modelling features. These enable UA to natively represent data from practically any data source on one side while retaining data context and delivering it to consumers in the best possible way. Correctly expressing data structures using consistent UA data models successfully abstracts the physical layer devices.

Future Scope:

All components in the ‘factory of the future’ will operate independently, relying on interconnections. Whether such elements are people, machines, equipment, or systems, they must be designed to gather and exchange meaningful information. As a result, future components will communicate and operate intelligently. While the industry is on the verge of the latest industrial revolution, interconnection is the essential enabler. OPC UA, a standard that facilitates interoperability at all levels – device to device, a device to business, and beyond – is a critical component of this process.

Conclusion

While a fully functional Industry 4.0 may seem like a pipe dream at this point, the industrial transformation at the grass-root level is already in full swing. Controlling the flow of resources, commodities, and information, enabling speedier decision-making, and simplifying reporting are advantages those businesses may anticipate as they transition to Industry 4.0. Intelligent materials will instruct machines on how to process them; maintenance and repair will evolve to transform inflexible production lines into modular and efficient systems. Eventually, a product’s complete lifespan can be road-mapped with its practical performance. OPC UA, which enables intelligent data exchanges across all levels of an organization, will play a significant role in evangelizing Industry 4.0

A new genre of industrial data exchange between industrial machines and communication PCs is on the rise – the Open Platform Communications United Architecture (OPC UA). Interestingly, application manufacturers, system providers, programming languages, and operating systems have no bearing on this open interface standard.

The most significant distinction between OPC UA and the previous versions of industrial communication protocol is how the machine data can be transferred – in bundles of information that machines and devices can understand. OPC UA allows devices communicate with each other (horizontally) and also with the upward components like PLCs, SCADA/HMI (Human Machine Interface), MES (Manufacturing Execution System), and up to the Enterprise Cloud (vertically). The horizontal and vertical spectrum comprises OPC UA components, including devices, machines, systems, gateways, and servers that are integrated with machines and devices.

is OPC UA Important in Industry 4.0?

The secure, standardized flow of data and information across devices, equipment, and services, are some of the problems for Industry 4.0 and the industrial Internet of Things (IIoT). The IEC 62541 standard OPC Unified Architecture (OPC UA) [I.1] was the only recommended option for creating the communication layer in the Reference Architecture Model for Industry 4.0 (RAMI 4.0) in April 2015.

The most fundamental prerequisite for adopting OPC UA for industrial 4.0 communication is an Internet Protocol-based network (IP). Anyone who wishes to promote themselves as “Industry 4.0-capable” must also be OPC-UA-capable (integrated or via a gateway).

 

Implementation of Industry 4.0 to Overcome Interoperability

OPC UA is a powerful solution for overcoming interoperability issues in Industry 4.0.

Interoperability is one of the most significant problems that I4.0 presents to companies. Through its semantic communication standard, OPC UA demonstrates that it is a solution. OPC UA is a crucial contributor to Industry4.0 because it facilitates information transfer between devices and machines, which cannot understand confusing instructions. The more specific the instructions are, the better the outcome.

The selection of tools is crucial for installing the finest OPC UA for any automation system. Because the devices in industrial automation systems are administered by software, a well-functioning software development kit (SDK) is required. It guarantees that end-users and software engineers have a good user experience.

Important factors to consider while implementing OPC UA :

The appropriate software development kit is essential for establishing an efficient OPC UA. We’ve compiled a list of ten considerations for an automation maker, OEM, discrete, and process manufacturer when selecting an SDK.

The Ideal SDK Vendor

Most businesses lack adequate resources, both technological and human. Such gaps force organizations to outsource their requirements. As a result, the chosen SDK must fulfill its application requirements while improving the time to market. An ideal SDK must be advantageous in terms of both money and performance. A majority of SDK consultants provide the core functionalities that offer fundamental OPC UA advantages such as security and API.

Scalability

A scalable SDK empowers OPC UA to support both new and existing systems. It allows the platform-independent toolkits to function efficiently for both lightweight and enterprise-level applications. As a result, manufacturers must consider a scalable SDK that is platform or OS agnostic and supports vendor-independent hardware.

Utilization Ease

It is one of the most preferred yet neglected features. An SDK should be simple to use so that OEMs or small-scale manufacturers can save time and resources learning the OPC UA specification. It must support a basic application and provide API connectivity.

CPU Helper

An OPC UA SDK developed using architectural principles for embedded devices uses considerably less CPU. It also means that the software program may do a lot of work on a single thread. It is useful when multi-threads aren’t accessible. It is also economical because it offers a low-cost CPU that can perform majority of the work in multi-thread scenarios.

Excellent Memory

A decent OPC UA implementation should be light on RAM and have a small footprint. Generally, memory leaks can build up over time and put the entire system to a halt. There must be no memory leaks in the OP UA SDK (under any use case situations).

Security and Compatibility

The OPC UA SDK toolkit must be interoperable with diverse applications and meet stringent security requirements. The OPC UA standards provide various security options, and an ideal SDK should support them all.

Language Assistance

Even though C++ is the most common language for writing SDK programming, other languages like Java, C, .NET, and others are also utilized based on the needs. Developing an OPC UA SDK in multiple languages facilitates incremental enhancements to their products based on specifications such as AMQP, Pub/Sub, and UDP.

Third-party Libraries

Because most businesses have preferred libraries, SDK suppliers usually include wrappers such as standard crypto libraries, use-case examples, manuals, and API references to utilize wrappers such as NanoSSL, mBed TLS, TinyXML2, and Lib2XML. Scope for Future Improvements

An SDK must be capable of evolving to support emerging technologies and processes. Because of the continuing advances in SDKs and OPC Foundation-based technologies such as AMQP Pub/Sub, UDP, and TSN, manufacturers must guarantee that SDK suppliers are equipped with the required capabilities while implementing industry-relevant protocols.

Vendor Assistance

SDK suppliers must provide knowledge and support to manufacturers at every stage of their OPC UA deployment. An efficient OPC UA deployment requires a partnership built on trust, mutual benefits, and understanding.

OEMs, discrete and process manufacturers must collaborate to understand and execute OPC UA requirements for everybody’s benefit.

How OPC UA contributes to Industry 4.0 and overcomes interoperability challenges?

OPC UA provides a mechanism for safe and reliable data sharing. As the world’s most popular open connectivity standard, it plays a crucial role in achieving Industry 4.0 goals.

OPC UA fulfills the Industry4.0 requirements of platform independence and time-durability. Additionally, OPC UA is designed to enable future factories to include ‘invisible’ components into their permanent data exchange, thereby significantly enhancing OPC UA’s position in the realm of Internet of Things.

Embedded OPC UA technology allows open connection to devices, sensors, and controllers, providing many benefits to businesses. End-users gain from speedier decision-making due to the data it delivers, and the integrated corporate architecture becomes a reality.

The notion of an interconnected industry is central to Industry 4.0. As the precursor to OPC UA, OPC Classic pioneered an ‘open data connection’ revolution, removing proprietary connectivity barriers between the management, control systems, and the rest of the organization.

OPC UA takes the notion of a unified solution a step further with its platform & operating system agnostic approach and data modelling features. These enable UA to natively represent data from practically any data source on one side while retaining data context and delivering it to consumers in the best possible way. Correctly expressing data structures using consistent UA data models successfully abstracts the physical layer devices.

Future Scope:

All components in the ‘factory of the future’ will operate independently, relying on interconnections. Whether such elements are people, machines, equipment, or systems, they must be designed to gather and exchange meaningful information. As a result, future components will communicate and operate intelligently.

While the industry is on the verge of the latest industrial revolution, interconnection is the essential enabler. OPC UA, a standard that facilitates interoperability at all levels – device to device, a device to business, and beyond – is a critical component of this process.

Conclusion

While a fully functional Industry 4.0 may seem like a pipe dream at this point, the industrial transformation at the grass-root level is already in full swing. Controlling the flow of resources, commodities, and information, enabling speedier decision-making, and simplifying reporting are advantages those businesses may anticipate as they transition to Industry 4.0.

Intelligent materials will instruct machines on how to process them; maintenance and repair will evolve to transform inflexible production lines into modular and efficient systems. Eventually, a product’s complete lifespan can be road-mapped with its practical performance. OPC UA, which enables intelligent data exchanges across all levels of an organization, will play a significant role in evangelizing Industry 4.0

How Oil and Gas Industry is Becoming Competitive with DevOps

How Oil and Gas Industry is Becoming Competitive with DevOps

Industrial automation has greatly influenced digital transformation in the oil and gas industry. It includes numerous connected devices that make this industry highly dependent on hardware and software components. As per the World Economic Forum, the digital transformation business for the Oil and Gas Industry is estimated to be $1.6 trillion by 2025.

One of the novel practices for effective implementation of digital transformation in the Industry 4.0 context is DevOps. In an industrial landscape, it refers to the combined efforts of the development(Dev) and Operations(Ops) teams in creating effective strategies that keep the company abreast of the technological, especially the digital trends.

Why is DevOps important?

Due to increased global competition and unexpected economic challenges, oil and gas companies are experiencing a strong need for digital transformation. Over the last decade, many organizations have reaped tremendous benefits by implementing DevOps in their business strategies. The positive results have encouraged the industry to incorporate software-driven innovations to improve productivity and achieve newer heights without causing significant disruptions to the existing business model.

In this scenario, DevOps plays a crucial role in helping industries roll up their manufacturing software faster because it:

  • Promotes Automation:DevOps is not just a technology. It is a concept that leverages tools and processes such as Continuous Integration and Continuous Delivery (CI/CD), real-time monitoring, incident response systems, and collaboration platforms. It promotes automation and introduces new tools for creating controllable iterations that drive high productivity with accurate results.
  • Optimizes IT Infrastructure:DevOps synchronizes the communication between the hardware and software components in the IIoT setup. It ensures proactive, smooth, and efficient operations at various levels and help achieve operational excellence that is predictable and measurable against intended outcomes and goals.
  • Improves Operational Stability:By applying DevOps practices systematically, oil and gas businesses can experience an incrimporved hydrocarbon recovery, better safety across the production plant, and enhanced overall operational stability. This approach relays effective solutions for all the connected operations until the endpoint.

Digital Transformation in the Oil and Gas Industry with DevOps

The urgency for digital transformation in business models of the oil and gas industry is on the rise. DevOps is one of the primary facilitators in helping companies increase their digital maturity and reap benefits by implementing the most appropriate technologies and processes across the business chain.

Here’s how DevOps helps O&G companies:

  • Identifies patterns in new revenue streams and gauges the maximum potential of digitalization.
  • Facilitates implementation of best IIoT practices to achieve condition-based performance that drives maximum efficiency of their IT and plant infrastructure.
  • Streamlines a hybrid operational model that promotes agile manufacturing principles and practices.
  • Assists companies through their journey of experimentation with digital transformation through continuous improvement and reliable transition.

Why is DevOps Better Than Agile?

The decision-makers of Oil & Gas companies are eager to deploy practices that bring fruitful digital transformation to their organizations. Often, it is hard to choose from the two most popular enterprise practices such as DevOps and Agile. This dilemma is mainly because both methodologies focus on accurate results in the most efficient manner possible.

According to recent industry trends, the DevOps market is expected to grow at a CAGR rate of 22.9%, signaling a greater adoption rate than Agile. Let us understand why oil and gas companies prefer DevOps over Agile in Industry 4.0.

Agile DevOps
1.Focuses on software development. 1.Focusses on fast paced and effective end-to-end business solutions.
2.Aligns development processes with customer needs at all stages. 2. Promotes continuous testing and delivery of products. Identifies glitches before they can cause massive disruption to the company’s operations.
3.The development team works in incremental spirits for software delivery, deployment, and maintenance. Operations teams work individually. 3.Promotes a healthy collaboration between teams across various departments to deliver error-free software to achieve total safety in the oil and gas setup.
4.Core values are: Individuals & Interactions, Working Software, Customer Collaboration, and Responding to Change. 4.Core values are: Systems Thinking, Adopt & Promote Feedback Loops, Continuous Experimentation & Learning.

Benefits of DevOps for Industry CIOs

Digitalization in the oil and gas industry is highly data-driven. Also, it constantly faces uncertainties due to fluctuations in global commodity prices, pressure to reduce carbon emissions and reliance on renewable alternatives. To overcome such challenges through an impactful digital transformation, the CIOs don multiple roles like a technical architect, solution expert, visionary, innovator, and purposeful technology provider to the company.

The blended business model of development and operations through DevOps helps CIOs create a fruitful roadmap toward a true digital transformation. Here is how DevOps drives such a transformation :

  • Fosters transparent and collaborative teamwork in creating quality software that ensures efficiency, productivity, and safety.
  • Identifies and implements the most appropriate automation technology leveraging the best possible output from every department in the organization. Empowers CIOs with the capability to set up IT infrastructure that withstands constant changes amid continuous delivery.
  • Enhances product quality by eliminating bottlenecks and errors.
  • Introduces team flexibility and agility for achieving the common goal
  • Enables the CIOs to adopt futuristic technology and processes to develop sustainable business plans.

Conclusion

The oil and gas industry is one of the most rapid embracers of new-age technologies. With more companies leveraging the software-hardware collaboration that IR4.0 offers, there is a dire need to deploy the best DevOps practices to reap its benefits.

Utthunga has the best automation tools and DevOps consulting services that cater to the oil and gas industry. Reach out to us at [email protected] to stride ahead of the competition by leveraging the power of DevOps.

Microsoft Azure and Amazon AWS: Comparing the Best In The Business

Microsoft Azure and Amazon AWS: Comparing the Best In The Business

Most professional advice will point towards a cloud-based service if your company explores hosting options for its official platform. Similarly, when you dive deep into the intricacies of cloud computing, you’ll find yourself bumping into Microsoft Azure and Amazon AWS as the two most viable options.

Since choosing between these two most popular options can be a little perplexing, we decided to clear the air for you. So, here’s a detailed comparison of Microsoft Azure and Amazon AWS.

Let’s get started.

A Closer Look at Microsoft Azure 

Microsoft Azure is a leading cloud computing platform that renders services like Infrastructure as a Service (IaaS), Software as a Service (SaaS), and Platform as a Service (PaaS). It is known for its cloud-based innovations in the IT and business landscape.

Microsoft Azure supports analytics, networking, virtual computing, storage, and more. In addition, its ability to replace on-premises servers makes it a feasible option for many upcoming businesses.

Microsoft Azure is an open service that supports all operating systems, frameworks, tools, and languages. The guarantee of 24/7 technical support and 99.9% availability SLA makes it one of the most reliable cloud computing platforms.

The data accessibility of data Microsoft Azure is excellent. Its geosynchronous data centers supporting greater reach and accessibility make it a truly global organization.

It is economical to avail of cloud-based services, as users pay only for what they use. Azure Data Lake Storage Gen2, Data Factory, Databricks, and Azure Synapse Analytics are the services offered through this cloud-based platform. Microsoft Azure is especially popular among data analysts as they can use it for advanced and real-time analytics. It also generates timely insights by utilizing Power BI visualizations.

Why Choose Microsoft Azure? 

Azure provides seamless capabilities to developers for cloud application development and deployment. In addition, the cloud platform offers immense scalability because of its open access to different languages, frameworks, etc.

Since Microsoft’s legacy systems and applications have shaped business journeys over the years, its compatibility with all legacy applications is a plus point. Since converting on-premises licenses to a fully cloud-based network is easy, the cloud integration process becomes effortless.

In many cases, cloud integration can be completed through a single click. With incentives like cheaper operating on Windows and Microsoft SQL Servers via the cloud, Microsoft Azure attracts a large segment of IT companies and professionals.

A Closer Look at Amazon AWS

Amazon AWS is the leading cloud computing platform with efficient computing power and excellent functionality. Developers use the Amazon AWS platform extensively to build applications due to its broad scope of scalability and adaptation to various features and functionalities.

It is currently the most comprehensively used cloud platform in the world. More than 200 cloud-based services are currently available on this platform.

Amazon Web Services include IaaS, PaaS, and SaaS, respectively. In addition, the platform is highly flexible to add or update any software or service that your application exclusively requires.

It is an Open Access platform where machine learning capabilities are also within reach of the developers – all thanks to SageMaker.

This platform has excellent penetration and presence across the globe, with 80 availability zones in 25 major geographical regions worldwide. But, just like Microsoft Azure, the Amazon AWS model is highly economical.

Businesses only need to pay for the services they use, including computing power and cloud storage, among other necessities.

Why Choose Amazon AWS? 

The Compute Cloud offering allows you to use dynamic storage based on the current demands of your operations. You can use any operating system and programming language of your choice to develop on Amazon AWS.

Besides, all cloud integration services on the Amazon AWS platform are broad-spectrum and practical. The comprehensive tech support available 24/7 is a silver lining too.

The Amazon AWS platform enjoys excellent popularity with several high-profile customers. The transfer stability in the Amazon AWS offerings is quite good, implying that you won’t lose any functionality during migrations.

The instances of latency problems and lack of DevOps support are minimal with this platform.

Comparing Azure and AWS 

  • By Computing Power

Azure and AWS have excellent computing power but different features and offerings. For example, AWS EC2 supports the configuration of virtual machines and utilizing pre-configured machine images. Further, images can be customized with the Amazon AWS platform.

Unlike the machine instance in Amazon AWS used to create virtual machines, Azure users get to use Virtual Hard Disks (VHD). Virtual Hard Disks can be pre-configured by the users or by Microsoft. Pre-configuration can be achieved with third-party automation testing services based on the user’s requirement.

  • By Cloud Storage

Storage in Amazon AWS is allocated based on the initiation of an ‘Instance.’ This is temporary storage because it gets destroyed once the instance is terminated. Therefore, Amazon AWS’s cloud storage caters to the dynamic storage needs of the developers.

Microsoft Azure also offers temporary storage through D drives, Page Blobs, Block Blobs, and Files. Microsoft Azure also has relational databases and supports information retrieval with import-export facilities.

  • By Network

The Virtual Private Cloud on Amazon AWS allows users to create isolated networks within the same Cloud platform. Users also get to create private IP address ranges, subnets, network gateways, and route tables. You can avail of test automation services to check the networking success.

The networking options on Microsoft Azure are like that of Amazon AWS. Microsoft Azure offers Virtual Network (VNET) where isolated networks and subnets can be created. Test automation services can help in assessing existing networks.

  • By Pricing

Amazon AWS’s pricing is based on the services you use. Its simple pay-as-you-use model allows you to pay only for the services you use – without getting into the hassle of term-based contracts or licensing.

Microsoft Azure, too, has a pay-as-you-go model, just that their calculations are by the minute. Also, Azure offers short-term packages where pre-paid and monthly charges are applicable.

The Bottom Line

We hope you’ve got enough to decide which cloud computing platform is most suitable for your needs. For more advice on Cloud Application Development, reach out to our team at [email protected]

Utthunga is a leading Cloud service provider catering solutions like cloud integration services, automation testing services, and digital transformation consulting. To know more about what we do, contact our representatives today.

FA45426EA6AA8513BADC5CEFCB523A31